Abstract
There has been a great deal of excitement recently over the development of a theory for explicitly linearizing the input-output response of a nonlinear system using state feedback. One shortcoming of this theory is the inability to deal with non-minimum phase nonlinear systems. Highly maneuverable jet aircraft, such as the V/STOL Harrier, belong to an important class of a slightly non-minimum phase nonlinear systems. The non-minimum phase character of aircraft is a result of the small body forces that are produced in the process of generating body moments. In this paper, we show that, while straightforward application of the linearization theory to a non-minimum phase system results in a system with a linear input-output response but unstable internal dynamics, designing a feedback control based on a minimum phase approximation to the true system results in a system with desirable properties such as bounded tracking and asymptotic stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have