Abstract

The constraint-based design of flexure mechanisms requires a qualitative and quantitative understanding of the constraint characteristics of flexure elements that serve as constraints. This paper presents the constraint characterization of a slender, uniform and symmetric cross-section, spatial beam, which is one of the most basic flexure elements used in three-dimensional flexure mechanisms. The constraint characteristics of interest, namely stiffness and error motions, are determined from the non-linear load-displacement relations of the beam. Appropriate simplifying assumptions are made in deriving these relations so that relevant non-linear effects (load-stiffening, kinematic, and elastokinematic) are captured in a compact, closed-form, and parametric manner. The resulting spatial beam constraint model is shown to be accurate, using non-linear finite element analysis, within a load and displacement range of practical interest. The utility of this model lies in the physical and analytical insight that it offers into the constraint behavior of a spatial beam flexure, its use in 3D flexure mechanism geometries, and fundamental performance tradeoffs in flexure mechanism design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call