Abstract

The Sen formulation for chiral (2p)-form in 4p+2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4p+2$$\\end{document} dimensions describes a system with two separate sectors, one is physical while the other is unphysical. Each contains a chiral form and a metric. In this paper, we focus on the cases where the self-duality condition for the unphysical sector is linear while for the physical sector can be nonlinear. We show the decoupling at the Hamiltonian and Lagrangian levels. The decoupling at the Hamiltonian level follows the idea in the literature. Then by an appropriate field redefinition of the corresponding first-order Lagrangian, the separation at the Lagrangian level follows. We derive the diffeomorphism of the theory in the case where the chiral form in the physical sector has nonlinear self-dual field strength and couples to external (2p+1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(2p+1)$$\\end{document}-form field. Explicit forms of Sen theories are also discussed. The Lagrangian for the quadratic theory is separated into two Henneaux–Teitelboim Lagrangians. We also discuss the method of generating explicit nonlinear theories with p=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p=1$$\\end{document}. Finally, we also show that the M5-brane action in the Sen formulation is separated into a Henneaux–Teitelboim action in unphysical sector and a gauge-fixed PST in physical sector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.