Abstract

The precise evaluation of fracture strength of ultrathin (<50 μm thick) silicon chips/ribbons plays a critical role in design of deformability and lifetime of flexible/stretchable electronics. In its three-point bending test, however, the classical linear theory used to convert the experimental fracture load into fracture strength value fails to match the emerged geometrically nonlinear characteristics for such an ultrathin silicon die. Here, we consider the geometric large deformation and present its nonlinear solution to more reliably evaluate the fracture stress of ultrathin specimen by virtue of the obtained experimental fracture load. A quite good agreement on experiments shows that the nonlinear analytical predictions allow a more comprehensive understanding for the effects of the silicon samples’ thickness on the transformation from linear relation to nonlinearity. The comparisons indicate that the fracture strength values are lower from linear evaluations, and to this the corresponding correction factor is defined to enhance the estimate precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call