Abstract
We propose a scheme for trapped-atom interferometry using an interacting Bose-Einstein condensate. The condensate is controlled and spatially split into two confined external momentum modes through a series of Bragg pulses. The proposed scheme (i) allows the generation of large entanglement in a trapped-interferometer configuration via one-axis twisting dynamics induced by interatomic interaction and (ii) avoids the suppression of interactions during the interferometer sequence by a careful manipulation of the state before and after phase encoding. The interferometer can be used for the measurement of gravity with a sensitivity beyond the standard quantum limit.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have