Abstract
The present work deals with the application of coevolutionary algorithms and artificial neural networks to perform input selection and related parameter estimation for nonlinear black-box models in system identification. In order to decouple the resolution of the input selection and parameter estimation, we propose a problem decomposition formulation and solve it by a coevolutionary algorithm strategy. The novel methodology is successfully applied to identify a magnetorheological damper, a continuous polymerization reactor and a piezoelectric robotic micromanipulator. The results show that the method provides valid models in terms of accuracy and statistical properties. The main advantage of the method is the joint input and parameter estimation, towards automating a tedious and error prone procedure with global optimization algorithms.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have