Abstract
Nonlinear bending behavior of 3D braided rectangular plates subjected to transverse loads is investigated. A new micro-macro-mechanical model of unit cells is suggested. In this model, a 3D braided composite may be considered as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate. The material properties of the epoxy are expressed as a linear function of temperature. Based on Reddy’s higher-order shear deformation plate theory and general von Karman-type equations, analytical solutions for nonlinear bending behavior of simply supported 3D braided rectangular plates are obtained using mixed Galerkin-perturbation method. The numerical examples concern effects of geometric parameters, of fiber volume fraction, braiding angle and load boundary condition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have