Abstract

Applying nonlocal elasticity theory, von Kármán type nonlinear strain-displacement relation and plane wave expansion (PWE) method to Euler-Bernoulli beam, the calculation method of band structure of a nonlinear nonlocal piezoelectric phononic crystal (PC) nanobeam is proposed and formulized. In order to investigate the properties of wave propagating in the nanobeam in detail, band gaps of first four orders are picked, and the corresponding influence rules of electro-mechanical coupling fields, nonlocal effect and geometric parameters on band gaps are studied. During the researches, external electrical voltage and axial force are chosen as the influencing parameters related to electro-mechanical coupling fields. Scale coefficient is chosen as the influencing parameter corresponding to nonlocal effect. Length ratio between materials PZT-4 and epoxy and height-width ratio are chosen as the influencing parameters of geometric parameters. Moreover, all the influence rules are compared to those in linear nanobeam. The results are expected to be of help for the design of micro and nano devices based on piezoelectric periodic nanobeam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call