Abstract

In this paper, we investigate the stability of the 2-dimensional (2D) Taylor–Couette (TC) flow for the incompressible Navier–Stokes equations. The explicit form of velocity for 2D TC flow is given by u=(Ar+Br)(-sinθ,cosθ)T\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$u=(Ar+\\frac{B}{r})(-\\sin \ heta , \\cos \ heta )^T$$\\end{document} with (r,θ)∈[1,R]×S1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(r, \ heta )\\in [1, R]\ imes \\mathbb {S}^1$$\\end{document} being an annulus and A, B being constants. Here, A, B encode the rotational effect and R is the ratio of the outer and inner radii of the annular region. Our focus is the long-term behavior of solutions around the steady 2D TC flow. While the laminar solution is known to be a global attractor for 2D channel flows and plane flows, it is unclear whether this is still true for rotating flows with curved geometries. In this article, we prove that the 2D Taylor–Couette flow is asymptotically stable, even at high Reynolds number (Re∼ν-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Re\\sim \ u ^{-1}$$\\end{document}), with a sharp exponential decay rate of exp(-ν13|B|23R-2t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\exp (-\ u ^{\\frac{1}{3}}|B|^{\\frac{2}{3}}R^{-2}t)$$\\end{document} as long as the initial perturbation is less than or equal to ν12|B|12R-2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ u ^\\frac{1}{2} |B|^{\\frac{1}{2}}R^{-2}$$\\end{document} in Sobolev space. The powers of ν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ u $$\\end{document} and B in this decay estimate are optimal. It is derived using the method of resolvent estimates and is commonly recognized as the enhanced dissipative effect. Compared to the Couette flow, the enhanced dissipation of the rotating Taylor–Couette flow not only depends on the Reynolds number but also reflects the rotational aspect via the rotational coefficient B. The larger the |B|, the faster the long-time dissipation takes effect. We also conduct space-time estimates describing inviscid-damping mechanism in our proof. To obtain these inviscid-damping estimates, we find and construct a new set of explicit orthonormal basis of the weighted eigenfunctions for the Laplace operators corresponding to the circular flows. These provide new insights into the mathematical understanding of the 2D Taylor–Couette flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.