Abstract

This is a survey of nonlinear approximation, especially that part of the subject which is important in numerical computation. Nonlinear approximation means that the approximants do not come from linear spaces but rather from nonlinear manifolds. The central question to be studied is what, if any, are the advantages of nonlinear approximation over the simpler, more established, linear methods. This question is answered by studying the rate of approximation which is the decrease in error versus the number of parameters in the approximant. The number of parameters usually correlates well with computational effort. It is shown that in many settings the rate of nonlinear approximation can be characterized by certain smoothness conditions which are significantly weaker than required in the linear theory. Emphasis in the survey will be placed on approximation by piecewise polynomials and wavelets as well as their numerical implementation. Results on highly nonlinear methods such as optimal basis selection and greedy algorithms (adaptive pursuit) are also given. Applications to image processing, statistical estimation, regularity for PDEs, and adaptive algorithms are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.