Abstract

Classical model reduction techniques project the governing equations onto linear subspaces of the high-dimensional state-space. For problems with slowly decaying Kolmogorov- -widths such as certain transport-dominated problems, however, classical linear-subspace reduced-order models (ROMs) of low dimension might yield inaccurate results. Thus, the concept of classical linear-subspace ROMs has to be extended to more general concepts, like model order teduction (MOR) on manifolds. Moreover, as we are dealing with Hamiltonian systems, it is crucial that the underlying symplectic structure is preserved in the reduced model, as otherwise it could become unphysical in the sense that the energy is not conserved or stability properties are lost. To the best of our knowledge, existing literature addresses either MOR on manifolds or symplectic model reduction for Hamiltonian systems, but not their combination. In this work, we bridge the two aforementioned approaches by providing a novel projection technique called symplectic manifold Galerkin (SMG), which projects the Hamiltonian system onto a nonlinear symplectic trial manifold such that the reduced model is again a Hamiltonian system. We derive analytical results such as stability, energy-preservation, and a rigorous a posteriori error bound. Moreover, we construct a weakly symplectic deep convolutional autoencoder as a computationally practical approach to approximate a nonlinear symplectic trial manifold. Finally, we numerically demonstrate the ability of the method to achieve higher accuracy than (non-)structure-preserving linear-subspace ROMs and non-structure-preserving MOR on manifold techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.