Abstract

Roll over protective structure (ROPS) is a critical passive safety system of any off-highway equipment. The ROPS is one of the mandatory DGMS requirements and structure is expected to withstand the impact force and maintains the safe space for operator survival during rollover accident. In the present research work, attempts are made to study the non-linear behavior of a two-post roll over protective structure of motor grader having 25T Gross Vehicle Weight (GVW) by using Finite Element Analysis (FEA). In order to enhance the energy absorbing capacity and to have better performance of ROP structure, an interweave energy absorber was introduced inside the ROPS column. CAD model of ROPS was made by using Pro-E modeling software and non-liner analysis was carried by using LS-Dyna software. Non-linear analysis used to compute the maximum deformation and von-misses stress and energy absorption with respect to the lateral, vertical and longitudinal load. Non-linear analysis was carried out for each load case and studied the behavior of ROPS structure. Among all the load conditions, the lateral impact load is a vital role with respect to the energy absorption criteria. The result of non-linear analysis is appreciably par with the standard ISO: 3471(2008) E ROPS performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.