Abstract

Arches are often supported elastically by other structural members. This paper investigates the in-plane nonlinear elastic behaviour and stability of elastically supported shallow circular arches that are subjected to a radial load uniformly distributed around the arch axis. Analytical solutions for the nonlinear behaviour and for the nonlinear buckling load are obtained for shallow arches with equal or unequal elastic supports. It is found that the flexibility of the elastic supports and the shallowness of the arch play important roles in the nonlinear structural response of the arch. The limiting shallownesses that distinguish between the buckling modes are obtained and the relationship of the limiting shallowness with the flexibility of the elastic supports is established, and the critical flexibility of the elastic radial supports is derived. An arch with equal elastic radial supports whose flexibility is larger than the critical value becomes an elastically supported beam curved in elevation, while an arch with one rigid and one elastic radial support whose flexibility is larger than the critical value still behaves as an arch when its shallowness is higher than a limiting shallowness. Comparisons with finite element results demonstrate that the analytical solutions and the values of the critical flexibility of the elastic supports and the limiting shallowness of the arch are valid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.