Abstract

It is commonly accepted that 36 in vacuo natural modes (NMS) are needed for converged, limit-cycle oscillations (LCOs) of isotropic or laminated anisotropic rectangular panels in supersonic air flow. It’s computationally costly for nonlinear aeroelastic panel response using such a large number of modes, and it also causes complexity and difficultly in designing controllers for panel flutter suppression. Based on Hamilton principle, the aeroelastic finite element motion equations of the 3-D panel are established by using the von Karman large deflection theory, first-order piston theory aerodynamics, the proper orthogonal decomposition (POD) method are adopted to construct a reduced order model of the panel, then the reduced panel flutter equations are solved in time domain using a numerical integration method. Comparing with the LCOs calculated by using 36NMS, the results obtained by using the reduced order model based on POD method (POD/ROM) show a good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call