Abstract

The nonlinear aeroelastic characteristics of a fighter-type wing with control surface have been investigated. The fictitious mass modal approach is used to reduce the problem size and the computation time in the linear and nonlinear flutter analyses. A Doublet-Hybrid method are used for the computation of subsonic unsteady aerodynamic forces. Structural nonlinearity of the control surface hinge is represented by a free-play spring. The linear and nonlinear flutter analyses indicate that the flapping mode of control surface and the hinge stiffness have significant effects on the flutter characteristics. The nonlinear flutter analysis shows that limit cycle oscillation and chaotic motion are observed in the wide range of air speed below the linear flutter boundary and the jump of limit cycle oscillation amplitude is observed. The nonlinear flutter characteristics and the nonlinear flutter boundary of limit cycle oscillation and chaotic motion have been investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.