Abstract

Our aim in this article is to derive models for nonisothermal phase separation. Starting from the two fundamental laws of thermodynamics, we consider the approach of Gurtin, based on a balance law for microforces, to derive nonisothermal Cahn-Hilliard type equations. These equations extend previous models derived by Alt and Pawlow based on an entropy principle to nonisotropic materials and to systems that are far from equilibrium. We also extend this approach to the Ginzburg-Landau (Allen-Cahn) equation, for which we recover, as particular cases, some models obtained by Fremond with a physically different approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.