Abstract

The nonisothermal crystallization behaviors for poly(ethylene 2,6‐naphthalate) (PEN) and poly(ethylene 2,6‐naphthalate) (PEN)/montmorillonite nanocomposites prepared by melt intercalation were investigated using differential scanning calorimetry (DSC). The Jeziorny, Ozawa, Ziabicki, and Kissinger models were used to analyze the experimental data. Both the Jeziorny and the Ozawa models were found to describe the nonisothermal crystallization processes of PEN and PEN/montmorillonite nanocomposites fairly well. The results obtained from the Jeziorny and the Ozawa analysis show that the montmorillonite nanoparticles dispersed into PEN matrix act as heterogeneous nuclei for PEN and enhance its crystallization rate, accelerating the crystallization, but a high‐loading of montmorillonites restrain the crystal growth of PEN. The analysis results from the Ziabicki and the Kissinger models further verify the dual actions stated above of the montmorillonite nanoparticles in PEN matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.