Abstract

AbstractAs a class of predominantly used cathode interlayers (CILs) in organic solar cells (OSCs), perylene‐diimide (PDI)‐based polymers exhibit intriguing characteristics of excellent charge transporting capacity and suitable energy levels. Despite that, PDI‐based CILs with satisfied film‐forming ability and adequate solvent resistance are rather rare, which not only limits the further advance of OSC performances but also hinders the practical use of PDI CILs. Herein, we designed and synthesized two non‐conjugated PDI polymers for achieving high power conversion efficiency (PCE) in diverse types of OSCs. The utilization of oligo (ethylene glycol) (OEG) linkage enhanced the n‐doping effect of PDI polymers, leading to an improved ability of the CIL to reduce work function and improve electron transporting capability. Moreover, the introduction of the non‐ionic OEG chain effectively improve the wetting property and solvent resistance of PDI polymers, so the PPDINN CIL can withstand diverse processing conditions in fabricating different OSCs, including conventional, inverted and blade‐coated devices. The binary OSC with conventional structure using PPDINN CIL showed a PCE of 18.6 %, along with an improved device stability. Besides, PPDINN is compatible with the large‐area blade‐coating technique, and a PCE of 16.6 % was achieved in the 1‐cm2 OSC where a blade‐coated PPDINN was used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.