Abstract

Surgical resection and ablation therapy have been shown to achieve the purpose of a radical cure for liver cancer with a size of less than 3 cm; however, tiny liver cancer lesions of diameters smaller than 2 cm remain challenging to diagnose and cure due to the failure of the generation of new blood vessels within tumors. Emerging evidence has revealed that optical molecular imaging combined with nanoprobes can detect tiny cancer from the perspective of molecular and cellular levels and kill cancer cells by the photothermal effect of nanoparticles in real time, thereby achieving radical goals. In the present study, we designed and synthesized multicomponent and multifunctional ICG-CuS-Gd@BSA-EpCAM nanoparticles (NPs) with a potent antineoplastic effect on tiny liver cancer. Using subcutaneous and orthotopic liver cancer xenograft mouse models, we found that the components of the NPs, including ICG and CuS-Gd@BSA, showed synergistic photothermal effects on the eradication of tiny liver cancer. We also found that the ICG-CuS-Gd@BSA-EpCAM NPs exhibited triple-modal functions of fluorescence imaging, magnetic resonance imaging, and photoacoustic imaging, with targeted detection and photothermal treatment of tiny liver cancer under near-infrared light irradiation. Together, our study demonstrates that the ICG-CuS-Gd@BSA-EpCAM NPs in combination with optical imaging technique might be a potential approach for detecting and noninvasively and radically curing tiny liver cancer by the photothermal effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call