Abstract

The transmission of light through tissue is used in noninvasive monitoring, in particular photoplethysmography. Investigations involving the transmission of wavelengths absorbed by bilirubin (short wavelength visible light) have been limited, due to strong absorption by haemoglobin. Achieving transmission of these wavelengths through tissue may advance noninvasive monitoring of substances like bilirubin. This work investigates the use of high power light sources together with improvements in signal-to-noise ratio as a means of enabling the transmission of strongly absorbed light through tissue. A custom device using multiple high-power short-wavelength visible light sources together with low power red and infrared sources, and background light cancellation to improve signal-to-noise ratio, was constructed. Transmission of 454-1200 nm light through tissue was achieved, with pulsations present in measured signals. The transmission through tissue of multiple wavelengths of strongly absorbed light can be achieved by using high power light sources in conjunction with cancelling the effect of background light. Use of these techniques may allow investigations into the noninvasive monitoring of substances such as bilirubin using photoplethysmography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call