Abstract
The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images. The dataset included 2265 participants aged 40years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels. Eighty percent of the dataset was used for algorithm development and 20% for validation. A deep-convolutional neural network, utilizing VGG16, ResNet50, and InceptionV3 architectures, was trained to predict anemia and estimate Hb levels. Sensitivity, specificity, and accuracy were calculated, and receiver operating characteristic (ROC) curves were generated for comparison with clinical anemia data. GradCAM saliency maps highlighted regions linked to anemia and image processing techniques to quantify anemia-related features. For predicting anemia, the InceptionV3 model demonstrated the best performance, achieving 98% accuracy, 99% sensitivity, 97% specificity, and an area under the curve (AUC) of 0.98 (95% confidence interval [CI] = 0.97-0.99). For estimating Hb levels, the mean absolute error for the InceptionV3 model was 0.58 g/dL (95% CI = 0.57-0.59 g/dL). The model focused on the area around the optic disc and the neighboring retinal vessels, revealing that anemic subjects exhibited significantly increased vessel tortuosity and reduced vessel density (P < 0.001), with variable effects on vessel thickness. The InceptionV3 model accurately predicted anemia and Hb levels, highlighting the potential of deep learning and vessel analysis for noninvasive anemia detection. The proposed method offers the possibility to quantitatively predict hematological parameters in a noninvasive manner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have