Abstract
Low density lipoprotein (LDL) is the predominant atherogenic lipoprotein particle in the circulation. Conventionally, a fasting lipid profile has been used for atherosclerotic cardiovascular disease (ASCVD) risk assessment. A non-fasting sample is now regarded as a suitable alternative to a fasting sample. In routine clinical practice, the Friedewald equation is used to estimate LDL-cholesterol, but it has limitations. Commercially available direct measures of LDL-cholesterol are not standardised. LDL-cholesterol is a well-established risk factor for ASCVD, being the primary therapeutic target in both primary and secondary prevention. Non-high-density lipoprotein (HDL)-cholesterol is a measure of the cholesterol content in the atherogenic lipoproteins, but it does not reflect the particle number. Non-HDL-cholesterol has the advantage over LDL-cholesterol of including remnant cholesterol and being independent of triglyceride variability, but it is compromised by the non-specificity bias of direct HDL-cholesterol methods used in the calculation. Apolipoprotein (apo) B, the major structural protein in very low-density lipoprotein, intermediate density lipoprotein, LDL and lipoprotein (a), is a measure of the number of atherogenic lipoproteins. ApoB methods arestandardised, but the assay comes at an additional, albeit relatively low cost. Non-HDL-cholesterol and apoB aremore accurate measures than LDL-cholesterol in hypertriglyceridaemic individuals, non-fasting samples, and in those with very-low LDL-cholesterol concentrations. Accumulating evidence suggests that non-HDL-cholesterol and apoB are superior to LDL-cholesterol in predicting ASCVD risk, and both have been designated as secondary targets in some treatment guidelines. We review the measurement, potential role, utility and current status of non-HDL-cholesterol and apoB when compared with LDL-cholesterol in ASCVD risk assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.