Abstract

In this paper bifurcations of heterodimensional cycles with highly degenerate conditions are studied in three dimensional vector fields, where a nontransversal intersection between the two-dimensional manifolds of the saddle equilibria occurs. By setting up local moving frame systems in some tubular neighborhood of unperturbed heterodimensional cycles, the authors construct a Poincare return map under the nongeneric conditions and further obtain the bifurcation equations. By means of the bifurcation equations, the authors show that different bifurcation surfaces exhibit variety and complexity of the bifurcation of degenerate heterodimensional cycles. Moreover, an example is given to show the existence of a nontransversal heterodimensional cycle with one orbit flip in three dimensional system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.