Abstract

The impedance bandwidth of a near-field resonant parasitic (NFRP) element of an electrically small, metamaterial-inspired Egyptian Axe Dipole (EAD) antenna, can be altered significantly by embedding a non-Foster circuit element into it. The frequency agile behavior of the reactance component internal to the NFRP element of an EAD antenna with a center frequency of 300 MHz is established and a negative impedance converter (NIC) circuit is designed to mimic this behavior. Several other non-Foster circuits have been considered for the NIC implementation and will be discussed in our presentation. A Linvill-based design of the requisite NIC, which contains 4 bipolar junction transistors (BJTs), is presented here. ANSYS HFSS was used for the antenna simulation results; Agilent ADS was used for the circuit simulations. The co-designed, optimized results show an increase in the EAD fractional impedance bandwidth from 0.9% to 46.0%, a factor of over 50 times improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.