Abstract

The spectral and spatiotemporal dynamics of photoluminescence in monolayers of transition metal dichalcogenide WSe2 obtained by mechanical exfoliation on a Si/SiO2 substrate is studied over a wide range of temperatures and excitation powers. It is shown that the dynamics is nonexponential and, for times t exceeding ∼50 ps after the excitation pulse, is described by a dependence of the form 1/(t + t0). Photoluminescence decay is accelerated with a decrease in the temperature and in the energy of emitting states. It is shown that the observed dynamics cannot be described by a bimolecular recombination process, such as exciton—exciton annihilation. A model that describes the nonexponential photoluminescence dynamics by taking into account the spread of radiative recombination times of localized exciton states in a random potential gives good agreement with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call