Abstract

A classical result of Gilbarg states that a simple shock wave solution of Euler's equations is compressive if and only if a corresponding shock layer solution of the Navier-Stokes equations exists, assuming, among other things, that the equation of state is convex. An “entropy condition” appropriate for weeding out “unphysical” shocks in the nonconvex case has been introduced by T.-P. Liu. For shocks satisfying his entropy condition, Liu showed that purely viscous shock layers exist (with zero heat conduction). Dropping the convexity assumption, but retaining many other reasonable restrictions on the equation of state, we construct an example of a (large amplitude) shock which satisfies Liu's entropy condition but for which a shock layer does not exist if heat conduction dominates viscosity. We also give a simple restriction, weaker than convexity, which does guarantee that shocks which satisfy Liu's entropy condition always admit shock layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.