Abstract
It is well known that, closed with a non-convex equation of state (EOS), the Riemann problem for the Euler equations allows non-standard waves, such as split shocks, sonic isentropic compressions or rarefaction shocks, to occur. Loss of convexity then leads to non-uniqueness of entropic or Lax solutions, which can only be resolved via the Liu-Oleinik criterion (equivalent to the existence of viscous profiles for all admissible shock waves). This suggests that in order to capture the physical solution, a numerical scheme must provide an appropriate level of dissipation. A legitimate question then concerns the ability of high-order shock capturing schemes to naturally select such a solution. To investigate this question and evaluate modern as well as future high-order numerical schemes, there is therefore a crucial need for well-documented benchmarks. A thermodynamically consistent C ∞ non-convex EOS that can be easily introduced in Eulerian as well as Lagrangian hydrocodes for test purposes is here proposed, along with a reference solution for an initial value problem exhibiting a complex composite wave pattern (the Bizarrium test problem). Two standard Lagrangian numerical approaches, both based on a finite volume method, are then reviewed (vNR and Godunov-type schemes) and evaluated on this Riemann problem. In particular, a complete description of several state-of-the-art high-order Godunov-type schemes applicable to general EOSs is provided. We show that this particular test problem reveals quite severe when working on high-order schemes, and recommend it as a benchmark for devising new limiters and/or next-generation highly accurate schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.