Abstract

We study the applications of non-equilibrium relations such as the Jarzynski equality and fluctuation theorem to spin glasses with gauge symmetry. It is shown that the exponentiated free-energy difference appearing in the Jarzynski equality reduces to a simple analytic function written explicitly in terms of the initial and final temperatures if the temperature satisfies a certain condition related to gauge symmetry. This result is used to derive a lower bound on the work done during the non-equilibrium process of temperature change. We also prove identities relating equilibrium and non-equilibrium quantities. These identities suggest a method to evaluate equilibrium quantities from non-equilibrium computations, which may be useful to avoid the problem of slow relaxation in spin glasses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call