Abstract

Transcription factors are proteins that regulate gene activity by activating or repressing gene transcription. A special class of transcriptional repressors operates via a short-range mechanism, making local DNA regions inaccessible to binding by activators, and thus providing an indirect repressive action on the target gene. This mechanism is commonly modeled assuming that repressors interact with DNA under thermodynamic equilibrium and neglecting some configurations of the gene regulatory region. We elaborate on a more general nonequilibrium model of short-range repression using the graph formalism for transitions between gene states, and we apply analytical calculations to compare it with the equilibrium model in terms of the repression strength and expression noise. In contrast to the equilibrium approach, the new model allows us to separate two basic mechanisms of short-range repression. The first mechanism is associated with the recruiting of factors that mediate chromatin condensation, and the second one concerns the blocking of factors that mediate chromatin loosening. The nonequilibrium model demonstrates better performance on previously published gene expression data obtained for transcription factors controlling Drosophila development, and furthermore it predicts that the first repression mechanism is the most favorable in this system. The presented approach can be scaled to larger gene networks and can be used to infer specific modes and parameters of transcriptional regulation from gene expression data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.