Abstract

The influence of the speed of the switching process on the nonequilibrium domain structures in magnetic thin-film elements undergoing large angle rotations was studied with time-resolved scanning Kerr microscopy and numerical modelings. In particular, the systematic evolution of the spatiotemporal nature of the reversal of a small Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">80</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">20</sub> element to progressively faster switching fields has been investigated. Generally, the magnetization evolves into a complex domain structure in nonequilibrium state when a magnetic element is excited by applying a short magnetic field pulse. The degree of complexity of the nonequilibrium domain structure is found to be a strong function of the speed of the switching process

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call