Abstract

Double nanocontact (NC) spin transfer vortex oscillator devices, in which NCs of 100-nm diameter have center-to-center separation ranging from 200 to 1100 nm, have been studied by means of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM). The NCs were positioned close to the edge of the top electrical contact so that the magnetization dynamics of the adjacent region could be probed optically. The electrical measurements showed different ranges of frequency operation for devices with different NC separations. For 900-nm NC separation, TRSKM showed magnetic contrast consistent with the formation of a magnetic vortex at each NC, while for 200-nm NC separation a lack of magnetic contrast near the NC region suggests that the magnetization dynamics occur closer to the NC and underneath the top contact. TRSKM also reveals the presence of additional localized dynamical features far from the NCs, which are not seen by electrical measurements; has not been reported previously for double NCs with different separations; and provides insight into how the dynamic state of the phase-locked oscillators is established and stabilized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.