Abstract

The relaxation of an internal state distribution in the presence of an excess of an inert gas is considered. The explicit time dependence of the nonequilibrium contributions to the transition rate coefficients is approximated using the Kapral-Hudson-Ross method. The resulting solution contains cross-correlation terms which do not appear when a single reaction is considered. It is shown that the first term of a perturbation expansion of an exact formal solution gives the Kapral-Hudson-Ross solution for short times, and the Chapman-Enskog solution at long times if there is a wide separation in time scales. The Kapral-Hudson-Ross, Chapman-Enskog, and exact solutions are compared for a two-state, hard-sphere model system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.