Abstract
ABSTRACT Recent advances in fabrication techniques have enabled the development of materials sculpted at the nanoscale (~10 nm). These “nano-materials” could revolutionize thermal management technologies by providing novel ways to manipulate energy propagation in solids. Atomistic simulations are critical to forging this revolution, given their ability to describe a system’s dynamics on an atom by atom basis. This topical review focuses on nonequilibrium Green’s functions (NEGF) simulations to model vibrational energy propagation at the nanoscale. NEGF is an atomistic and purely quantum mechanical approach well-suited to compute thermal transport in spatially varying systems such as “nano-materials.” This review presents the NEGF methodology from a top-to-bottom perspective, focusing on the concepts behind the mathematical expressions. We start describing the implementation of NEGF that assumes harmonic interatomic potentials (h-NEGF) and some recent advances that distinguish the transport contributions by different polarizations. This review also discusses the less common implementation of NEGF that includes the anharmonic terms of the potentials (a-NEGF), outlining existing approximations and standing challenges. Our success in tackling these challenges will determine whether we will harness the full potential of NEGF to describe thermal transport from a quantum mechanical standpoint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanoscale and Microscale Thermophysical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.