Abstract

In this paper the electrical characteristics of a novel nanoscale double-gate (DG) silicon-on-insulator(SOI) MOSFET, in which the front gate consists of two materials with different work functions, have been investigated by a full quantum-mechanical simulation. The simulations have been done by the self-consistent solution of 2D Poisson–Schrödinger equations, within the nonequilibrium Green's function (NEGF) formalism. The quantum simulation results show that the new structure decreases significantly the leakage current and drain conductance and increases the on–off current ratio and voltage gain as compared to the conventional DG SOI MOSFET. In this new structure, the potential in the channel region exhibits a step function that ensures the screening of the drain potential variation by the gate near the drain, resulting in suppressed short-channel effects like the drain-induced barrier lowering (DIBL) and hot-carrier effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.