Abstract

Summary form only given. Shot noise is the fluctuation in the electrical signal due to the discreteness of electron charges <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> . The deviation of the uncorrelated shot noise is normally given by the Fano factor. Ultrafast electron pulse with high rightness and coherence can be generated by illumination of a dc-based metallic field emitter with femtosecond laser pulses <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . A nonequilibrium model based on Boltzmann's equation has been used to explain the electron emission process <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> . Based on this model, the shot noise of the emission current is calculated. The effects of the shot noise reduction on applied dc voltage, laser intensity, pulse duration and metal work function are investigated. It is found that the Fano factor increases with small applied dc voltage, large laser field and longer time of tip and pulse interaction <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> . Our result would be helpful for investigate the coherence properties of ultrafast electron sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.