Abstract

The nonequilibrium evolution of the system of two kinds of fermions under the action of a pulse of the external field has been studied. The number of fermions of each kind oscillates (with beats and decaying) as a function of the duration of the pulse about the value determined by the magnitude of the pulse, and as a function of the magnitude of the pulse. For low-dimensional systems those oscillations can serve as a non-zero-temperature manifestation of dynamical quantum phase transitions. The response of a Fermi gas or liquid in a tilted magnetic field, an edge state of a topological insulator, a quantum wire with spin-orbit coupling, and a dimerized spin-1/2 chain to the pulse can manifest such dynamical oscillations, which can be observed in experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.