Abstract

Magnetic flux leakage testing (MFLT), which measures the distribution of a magnetic field on a magnetized specimen by using a magnetic sensor such as a Hall sensor, is an effective nondestructive testing (NDT) method for detecting surface cracks on magnetized ferromagnetic materials. A scan-type magnetic camera, based on the principle of MFLT, uses an inclined Hall sensor array on a printed circuit board (PCB) to detect small cracks at high speed. However, the wave forms appear in a direction perpendicular to the scan because the sensors are bonded at different gradients and heights on the PCB despite careful soldering. In this paper, we propose linearly integrated Hall sensors (LIHaS) on a wafer to minimize these waves and to improve the probability of crack detection. A billet specimen is used to determine the effectiveness of the LIHaS in multiple crack detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.