Abstract
As a nondestructive testing method, the magnetic flux leakage (MFL) testing technique is widely used for the testing of surface and near-surface areas in ferromagnetic materials. The MFL field is influenced by parameters of defects, strength of excitation, sensor lift-off value and electromagnetic noises etc. A 2-D finite element method (FEM) simulation model is established in this paper to analyze the influence of lift-off values under the condition of mechanical vibration and electromagnetic noises. The distribution of the MFL field peak for different lift-off values and different depth defects is presented. The defect quantization errors caused by the mechanical vibration and electromagnetic noises are introduced to analyze the influence of lift-off values and electromagnetic noises. The best range of lift-off values can be determined from the results of error analysis. It is effective to improve the measuring accuracy in practical MFL testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.