Abstract

In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers’ expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects’ attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import–export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods’ application in the detection and classification of insect infestation in fruits and vegetables.

Highlights

  • In recent years, there has been significant growth in the consumption of fruits and vegetables, which can be attributed to several factors, among which is increased awareness of their health benefits [1]

  • The significance of ineffective insect infestation detection in fruits and vegetables is broad. It lies in the reduction in the value of produce that may ensue when they enter the supply chain without detection and control, the economic losses when infestation causes a ban of produce export, spread or damage occurring to high-quality produce, and the safety issues related to consuming or processing infested produce

  • This paper reviewed different methods that have been explored in the last few years for non-destructive detection and classification of fruits and vegetables infested with different types of insect pests

Read more

Summary

Introduction

There has been significant growth in the consumption of fruits and vegetables, which can be attributed to several factors, among which is increased awareness of their health benefits [1]. A range of techniques have been reported for non-destructive detection of insect infestation such as near-infrared (NIR) spectroscopy [13,14,15,16], acoustic methods—sound/noise/vibration [17,18,19], imaging—visible light sensing [20], hyperspectral imaging [3,21], nuclear magnetic resonance [22], X-ray [23,24], volatile emission, and others [25,26,27,28] With these new applications of technology in agricultural processing as well as the multiplicity of investigations all over the world, up-to-date reviews are needed as an orientation over technological applications in agriculture and food science. This paper reviews all known techniques used for postharvest non-destructive detection of internal insect infestation in fruits and vegetables: their basic principles of operation are explained, the merits, as well as the limitations of each method are profiled, several examples of applications are presented, and challenges and opportunities for the future are discussed

Traditional Manual Methods
Spectroscopic Techniques
Visible Light Sensing
Results
Hyperspectral Imaging Systems
Classification Results
X-ray Imaging
Thermal Imaging
Acoustic Techniques for Insect Infestation Detection
E-Nose and E-Tongue
Method
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.