Abstract
Carbon fiber‐reinforced polymer (CFRP) laminates have been successfully used as externally bonded reinforcements for retrofitting, strengthening, and confinement of concrete structures. The adequacy of the CFRP‐concrete bonding largely depends on the bond quality and integrity. The bond quality may be compromised during the CFRP installation process due to various factors. In this study, the effect of four such construction‐related factors was assessed through nondestructive evaluation (NDE) methods, and quantification of the levels of CFRP debonding was achieved. The factors were surface cleanliness, surface wetness, upward vs. downward application, and surface voids. A common unidirectional CFRP was applied to small‐scale concrete samples with factorial combinations. Ground‐penetrating radar and thermography NDE methods were applied to detect possible disbonds at CFRP‐concrete interfaces. Thermography was found to clearly detect all four factors, while the GPR was only effective for detecting the surface voids only. The thermal images overpredicted the amount of debonded CFRP areas by about 25%, possibly due to scaling errors between the thermograph and the sample surface. The maximum debonded CFRP area in any sample was about two percent of the total CFRP area. This is a negligible amount of debonding, showing that the factors considered are unlikely to significantly affect the laminate performance or any CFRP contribution to the concrete member strength or confinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.