Abstract

In order to obtain more economic gains, some food products are adulterated with low-cost substances, if they are toxic, they may pose public health risks. This has called forth the development of quick and non-destructive methods for detection of adulterants in food. Near-infrared reflectance spectroscopy (NIRS) has become a promising tool to detect adulteration in various commodities. We have developed rapid NIRS based analytical methods for quantification of two cheap adulterants (grass pea and pea flour) in a popular Indian food material, chickpea flour. The NIRS spectra of pure chickpea, pure grass pea, pure pea flour and adulterated samples of chickpea flour with grass pea and pea flour (1-90%) (w/w) were acquired and preprocessed. Calibration models were built based on modified partial least squares regression (MPLSR), partial least squares (PLS), principal component regression (PCR) methods. Based on lowest values of standard error of calibration (SEC) and standard error of cross-validation (SECV), MPLSR-NIRS models were selected. These models exhibited coefficient of determination (R2 ) of 0.999, 0.999, SEC of 0.905, 0.827 and SECV of 1.473, 1.491 for grass pea and pea, respectively. External validation revealed R2 and standard error of prediction (SEP) of 0.999 and 1.184, 0.997 and 1.893 for grass pea and pea flour, respectively. The statistics confirmed that our MPLSR-NIRS based methods are quite robust and applicable to detect grass pea and pea flour adulterants in chickpea flour samples and have potential for use in detecting food fraud. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call