Abstract

We employ gigahertz frequency ultrasonic waves to non-invasively image grain microstructure in polycrystalline ceria. This technique, termed time-domain Brillouin scattering (TDBS), is a pump-probe technique that launches and monitors ultrasonic waves as they propagate into the sample. We demonstrate TDBS's capability to image microstructure by measuring mode and depth dependent acoustic velocities. The technique provides sufficient contrast to identify grains and offers means to reconstruct subsurface grain boundary's location. The results compare closely with electron backscatter diffraction measurement. This work expands the application of TDBS to 3D structural imaging and offers new route for the nondestructive characterization of grain boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.