Abstract
We study the nondegenerate two-photon down conversion described by a quantum trilinear Hamiltonian. The idler mode is initially prepared in the vacuum while the pump (laser) and the signal mode are prepared in coherent states which at high intensities resemble classical inputs. Such setup with a coherent signal mode allows us to scan the dynamics from the regime of the down conversion (empty signal) up to the frequency conversion (highly excited signal). The analysis concentrates on the entanglement properties of the modes which are compared with their other statistical properties such as squeezing and antibunching to give a more complete characterization of the modes. We show that the single mode nonclassical effects (squeezing and antibunching) disappear when an initial signal intensity highly exceeds that of the pump. In this regime the numerical results are confirmed by approximate analytical calculations. We point out that initially comparable intensities of the signal and pump mode lead to the effect of the “spontaneous disentanglement” of the signal mode from others and to the production of its squeezed and sub-Poissonian state which is pure to a good approximation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have