Abstract

In this paper, the effects of variable viscosity and thermal conductivity on coupled heat and mass transfer by free convection about a permeable horizontal cylinder embedded in porous media using Ergun mode are studied. The fluid viscosity and thermal conductivity and are assumed to vary as a linear function of temperature while the mass diffusion is assumed to vary as linear function of concentration. The surface of the horizontal cylinder is maintained at a uniform wall temperature and a uniform wall concentration. The transformed governing equations are obtained and solved by using the implicit finite difference method. Numerical results for dimensionless temperature and concentration profiles as well as Nusselt and Sherwood numbers are presented for various values of parameters namely, Ergun number, transpiration parameter, Rayleigh and Lewis numbers and buoyancy ratio parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call