Abstract
The heat and mass transfer characteristics of free convection about a permeable horizontal cylinder embedded in porous media under the coupled effects of thermal and mass diffusion are numerically analyzed. The surface of the horizontal cylinder is maintained at a uniform wall temperature and uniform wall concentration. The transformed governing equations are obtained and solved by Keller box method. Numerical results for the dimensionless temperature profiles, the dimensionless concentration profiles, the Nusselt number and the Sherwood number are presented. Increasing the buoyancy ratio N and the transpiration parameter f w increases the Nusselt number and the Sherwood number. For thermally assisting flow, when Lewis number Le increases, the Nusselt (Sherwood) number decreases (increases). Whereas, for thermally opposing flow, both the Nusselt number and the Sherwood number increase with increasing the Lewis number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.