Abstract

In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM${}_{10}$ mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that---``apparent''---as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational symmetry breaking is a robust phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call