Abstract

Selective targeting of tumor cells and release of drug molecules inside the tumor microenvironment can reduce the adverse side effects of traditional chemotherapeutics because of the lower dosages required. This can be achieved by using stimuli‐responsive targeted drug delivery systems. In the present work, a robust and simple one‐pot route is developed to synthesize polymer‐gatekeeper mesoporous silica nanoparticles by noncovalent capping of the pores of drug‐loaded nanocontainers with disulfide cross‐linkable polymers. The method offers very high loading efficiency because chemical modification of the mesoporous nanoparticles is not required; thus, the large empty pore volume of pristine mesoporous silica nanoparticles is entirely available to encapsulate drug molecules. Furthermore, the polymer shell can be easily decorated with a targeting ligand for selective delivery to specific cancer cells by subsequent addition of the thiol‐containing ligand molecule. The drug molecules loaded in the nanocontainers can be released by the degradation of the polymer shell in the intracellular reducing microenvironment, which consequentially induces cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.