Abstract
Carbon nanotubes (CNTs) have been extensively utilized in flexible electronics. However, further applications of CNTs are limited by their poor solubility in solvents. To overcome this obstacle, poly(tert-butyl methacrylate) modified hyperbranched polyethylene (HBPE-g-PtBMA) was employed. The HBPE core was designed to endow HBPE-g-PtBMA with a hyperbranched structure while the methyl groups of poly(tert-butyl methacrylate) provide CH–π interactions between HBPE-g-PtBMA and CNTs. Besides, the relative high melting endotherm of PtBMA segments enabled HBPE-g-PtBMA with feasibility to fabricate practical HBPE-g-PtBMA/MWCNTs conductive films. The bundled MWCNTs were found to be dispersed efficiently by HBPE-g-PtBMA into individual tubes with a maximum concentration of 455 mg L−1. Furthermore, fabrication of a conductive film by spin-coating the stable MWCNTs dispersion onto the PET substrate was explored. The conductive film was found to have good conductivity (13.14 S cm−1) and flexibility, which might have potential applications in flexible electronics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have