Abstract

In this paper, we study a mixed integer constrained quadratic programming problem. This problem is NP-Hard. By reformulating the problem to a box constrained quadratic programming and solving the reformulated problem, we can obtain a global optimal solution of a sub-class of the original problem. The reformulated problem may not be convex and may not be solvable in polynomial time. Then we propose a solvability condition for the reformulated problem, and discuss methods to construct a solvable reformulation for the original problem. The reformulation methods identify a solvable subclass of the mixed integer constrained quadratic programming problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.