Abstract

In this paper we address a min–max problem of fractional quadratic (not necessarily convex) over linear functions on a feasible set described by linear and (not necessarily convex) quadratic functions. We propose a conic reformulation on the cone of completely positive matrices. By relaxation, a doubly nonnegative conic formulation is used to provide lower bounds with evidence of very small gaps. It is known that in many solvers using Branch and Bound the optimal solution is obtained in early stages and a heavy computational price is paid in the next iterations to obtain the optimality certificate. To reduce this effort tight lower bounds are crucial. We will show empirical evidence that lower bounds provided by the copositive relaxation are able to substantially speed up a well known solver in obtaining the optimality certificate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.